15 октября, 2024

Orsk.today

Будьте в курсе последних событий в России благодаря новостям Орска, эксклюзивным видеоматериалам, фотографиям и обновленным картам.

Иллюстрированное глубокое обучение, часть 1: Как работает нейронная сеть?  |  Автор: Шрейя Рао |  Январь 2024 г.

Иллюстрированное глубокое обучение, часть 1: Как работает нейронная сеть? | Автор: Шрейя Рао | Январь 2024 г.

Иллюстрированное и интуитивно понятное руководство по нейронным сетям.

Если вы читали мои предыдущие статьи, вы будете знать, что будет дальше. В этой части Интернета мы берем сложные концепции и делаем их веселыми и интересными, разъясняя их. Если вы не читали мои предыдущие статьи, настоятельно рекомендую вам начать с цикла статей, освещающих данную тему. Основы машинного обучения Потому что вы обнаружите, что большая часть изложенного там материала актуальна и здесь.

Сегодня мы рассмотрим большую тему — введение в нейронные сети, которые представляют собой разновидность модели машинного обучения. Это всего лишь первая статья из целой серии, которую я планирую написать о глубоком обучении. Основное внимание будет уделено тому, как простая искусственная нейронная сеть может обучаться и предоставлять вам информацию. глубокий (Ха, каламбур) Понимание того, как строится нейронная сеть, нейрон за нейроном, — это… отличный Важно, потому что мы продолжим развивать эти знания. Пока мы углубимся в математические детали, не волнуйтесь, мы разберем и объясним каждый шаг. К концу этой статьи вы поймете, что это проще, чем кажется.

Но прежде чем мы это рассмотрим, вы можете задаться вопросом: зачем нам нейронные сети? Зачем выбирать нейронные сети, когда доступно так много алгоритмов машинного обучения? Ответов на этот вопрос много Это широко обсуждалосьПоэтому мы не будем углубляться в это. Но стоит отметить, что нейронные сети невероятно мощны. Они могут выявлять сложные закономерности в данных, с которыми могут столкнуться классические алгоритмы, решать очень сложные проблемы машинного обучения (такие как обработка естественного языка и распознавание изображений), а также уменьшать необходимость в обширном проектировании функций и ручных усилиях.

READ  YouTube прекращает тестирование iOS PIP для подписчиков Premium

Но, несмотря на это, проблемы нейронных сетей в основном сводятся к двум основным категориям: классификация, предсказание дискретной метки для данного входного сигнала (например: это изображение кошки или собаки? Положительная или отрицательная рецензия на этот фильм?) или регрессия, прогнозирующая значение Continuous для заданных входных данных (например, прогноза погоды).

Сегодня мы сосредоточимся на проблеме регрессии. Рассмотрим простой сценарий: мы недавно переехали в новый город и сейчас ищем новый дом. Однако отметим, что цены на жилье в регионе сильно различаются.

Поскольку мы не знаем города, нашим единственным источником информации является то, что мы знаем…