Твистроникс — это новая область квантовой физики, которая предполагает объединение материалов Ван-дер-Ваальса для исследования новых квантовых явлений. Исследователи из Университета Пердью продвинулись в этой области, введя квантовый спин в скрученные бислои антимагнетиков, что привело к настраиваемому муаровому магнетизму. Это достижение указывает на появление новых материалов для спиновой электроники и обещает прогресс в устройствах памяти и спиновой логике. Фото: SciTechDaily.com
Исследователи из Университета Пердью прядут двойные бислои антиферромагнетиков, чтобы продемонстрировать настраиваемый муаровый магнетизм.
Твистроникс — это не новое танцевальное движение, тренажер или музыкальная причуда. Нет, это намного круче, чем что-либо подобное. Это захватывающая новая разработка в квантовой физике и материаловедении, где материалы Ван-дер-Ваальса укладываются слоями друг на друга, как листы бумаги в стопку, которые могут легко скручиваться и поворачиваться, оставаясь при этом плоскими, и квантовые физики использовали эти стопки. открыть интересные квантовые явления.
Дополнив концепцию квантового спина скрученными бислоями антимагнетиков, можно получить настраиваемый муаровый магнетизм. Это предполагает новый класс материальных платформ для следующего шага в спиновой электронике: спинтронику. Эта новая наука может привести к созданию многообещающих устройств для памяти и спиновой логики, открыв миру физики совершенно новый путь применения спинтроники.
Скручивая магниты Ван-дер-Ваальса, можно получить нелинейные магнитные состояния с большой электрической настраиваемостью. Фото: Райан Аллен, Second Bay Studios.
Команда исследователей в области квантовой физики и материалов из Университета Пердью представила метод кручения для управления степенью свободы вращения с помощью CrI.3, материал Ван-дер-Ваальса (ВДВ), связанный с антиферромагнитной прослойкой в качестве его медиатора. Они опубликовали свои результаты под названием «Электрически перестраиваемый муаровый магнетизм в скрученных двойных бислоях трийодида хрома» в журнале. Природная электроника.
«В этом исследовании мы изготовили скрученный двойной слой CrI.3«То есть бислой плюс бислой с закрученным углом между ними», — говорит доктор Гуанвэй Ченг, соавтор публикации. «Мы сообщаем о муаровом магнетизме с богатыми магнитными фазами и большой возможностью настройки электрическим методом».
Супермуаровая структура двойного скрученного слоя (tDB) CrI3 и его магнитное поведение, исследованные с помощью магнитооптического эффекта Керра (MOKE). В разделе А выше показана схематическая диаграмма гофрированной сверхрешетки, изготовленной путем скручивания промежуточных слоев. Нижняя панель: можно показать нелинейный магнитный корпус. В разделе B выше показано, что результаты MOKE демонстрируют сосуществование ферромагнитных (AFM) и ферромагнитных (FM) порядков в «муаровом магните» tDB CrI3 по сравнению с AFM-порядками в естественном антиферромагнитном бислое CrI3. Фото: Иллюстрация Гуанхуи Ченга и Юн П. Чена.
«Мы сложили антиферромагнетик, скрутили его сам по себе и получили ферромагнетик», — говорит Чен. «Это также яркий пример недавно появившейся области «скрученного» магнетизма или муара в 2D-скрученных материалах, где угол скручивания между двумя слоями обеспечивает мощную ручку настройки и резко меняет свойства материала».
«Для изготовления скрученного двухслойного CrI3отрываем одну часть бислоя CrI3«Поверните его и сложите поверх другой части, используя так называемую технику разрыва и сложения», — объясняет Ченг. «Измеряя магнитооптический эффект Керра (MOKE), чувствительный инструмент для исследования магнитного поведения вплоть до нескольких атомных слоев, мы наблюдали сосуществование ферромагнитных и антиферромагнитных порядков, отличительную черту муарового магнетизма, а также продемонстрировали напряжение. магнитное переключение. Такой волновой магнетизм представляет собой новую форму магнетизма, характеризующуюся пространственно изменяющимися ферромагнитными и антиферромагнитными фазами, периодически чередующимися в соответствии с муаровой сверхрешеткой.
До сих пор твисттроника в основном фокусировалась на модификации электронных свойств, таких как скрученный бислой. Графен. Команда Purdue хотела предложить определенную степень свободы в ротации и решила использовать CrI.3, материал ВДВ в сочетании с антимагнитным слоем. Результат скручивания сложенных друг на друга антимагнитов стал возможным благодаря изготовлению образцов с разными углами скручивания. Другими словами, после изготовления угол скручивания каждого устройства становится постоянным, и затем выполняются измерения MOKE.
Теоретические расчеты для этого эксперимента были выполнены Упадхьяей и его командой. Это обеспечило серьёзную поддержку наблюдениям, сделанным командой Чена.
«Наши теоретические расчеты выявили фазовую диаграмму, богатую нелинейными фазами TA-1DW, TA-2DW, TS-2DW, TS-4DW и т. д.», — говорит Упадхьяя.
Это исследование является частью текущего исследования команды Чена. Эта работа следует за несколькими недавними соответствующими публикациями команды, связанными с новой физикой и свойствами «2D-магнитов», такими как «Возникновение перестраиваемого электрическим полем межфазного ферромагнетизма в 2D магнитных гетероструктурах«, который недавно был опубликован в Природные коммуникации. Это направление исследований имеет захватывающий потенциал в области спинтроники и спинтроники.
«Идентифицированные гофрированные магниты указывают на новый класс материальных платформ для спинтроники и магнитной электроники», — говорит Чен. «Наблюдаемые магнитное переключение с помощью напряжения и электромагнитный эффект могут привести к созданию многообещающих устройств памяти и спиновой логики. В качестве новой степени свободы этот поворот может быть применен к широкому спектру гомо/гетеро-бислоев для магнитов VdW, открывая возможность заниматься новой физикой, а также приложениями спинтроники».
Ссылка: «Электрически перестраиваемый муаровый магнетизм в скрученных двойных бислоях трийодида хрома» Гуанхуи Ченг, Мухаммад Мушфик Рахман, Андрес Льяксауанга Аллка, Авинаш Рустаги, Синтао Лю, Лина Лю, Лэй Фу, Янлинь Чжу, Чжицян Мао, Кенджи Ватанабэ, Такаши Танигучи . , Прами Упадхьяя и Юн Пей Чен, 19 июня 2023 г., Природная электроника.
дои: 10.1038/s41928-023-00978-0
В команду, в основном из Purdue, входят два равноправных ведущих автора: доктор Гуанвей Ченг и Мухаммад Мушфик Рахман. Ченг был постдокторантом в группе доктора Юн-Пея Чена в Университете Пердью, а сейчас является доцентом в Передовом институте исследования материалов (AIMR, где Чен также является главным исследователем) в Университете Тохоку. Мухаммад Мушфик Рахман — аспирант группы доктора Прами Упадхьяи. Чен и Упадхьяя являются авторами этой публикации и профессорами Университета Пердью. Чен — профессор физики и астрономии имени Карла Ларка Горовица, профессор электротехники и вычислительной техники и директор Института квантовой науки и техники Пердью. Упадхьяя — доцент кафедры электротехники и вычислительной техники. В число других членов команды Purdue входят Андрес Лаксауанга Алка (аспирант), доктор Лина Лю (постдок), доктор Ли Фу (постдок) из группы Чена, доктор Авинаш Рустаги (постдок) из группы Упадхьяи и доктор Синтао Лео. (бывший научный сотрудник Центра нанотехнологий Берка).
Эта работа частично поддерживается Управлением науки Министерства энергетики США (DOE) через Центр квантовых наук (QSC, Национальный центр квантовых информационных исследований) и Программу многопрофильных университетских исследовательских инициатив (MURI) Министерства обороны США (FA9550-) 20- 1-0322). Ченг и Чен также получили частичную поддержку от WPI-AIMR, JSPS KAKENHI Basic Science A (18H03858), New Science (18H04473 и 20H04623) и программы FRiD Университета Тохоку на ранних этапах исследования.
Упадхьяя также благодарит Национальный научный фонд (NSF) за поддержку (ECCS-1810494). объемный кри3 Кристаллы предоставлены группой Чжицян Мао из Университета штата Пенсильвания при поддержке Министерства энергетики США (DE-SC0019068). Объемные кристаллы hBN предоставлены Кенджи Ватанабэ и Такаши Танигучи из Национального института материаловедения, Япония, при поддержке JSPS KAKENHI (номера грантов 20H00354, 21H05233 и 23H02052) и Мирового премьер-центра международных исследовательских инициатив (WPI), MEXT. , Япония.
«Наркоман поп-культуры. Поклонник телевидения. Ниндзя алкоголика. Абсолютный фанат пива. Профессиональный знаток твиттера».
More Stories
SpaceX успешно запустила группировку навигационных спутников для Евросоюза
Замечена пара массивных плазменных струй, вылетающих из гигантской черной дыры Черные дыры
Драматические изображения гигантской полнолуния и частичного лунного затмения